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Abstract. The nonlinear process of the stimulated Raman effect is treated theoretically. 
Simple expressions are derived for the initial rates of change and limiting steady state values 
of the first two moments, the degrees of second-order coherence and the correlation function 
of the pump and Stokes beams. An analytical solution for the time dependence of the joint 
photon probak,ility distribution of the two light beams is obtained and then employed to 
calculate some numerical results for various special cases of interest, and the significance of 
these results is discussed in physical terms. Simpler approximate expressions are also derived 
for the case where the pump beam is much more intense than the Stokes beam. 

1. Introduction 

It has been known for some time (Shen 1967) that the nonlinear interaction between 
light and matter causes statistical changes in the properties of both, and therefore a 
complete description of any nonlinear effect requires the application of quantum statis- 
tics. The purpose of this paper is to consider in some detail the nonlinear process of the 
stimulated Raman effect by atoms from the quantum statistical point of view, and to 
answer the question of whether and how the statistical nature of the pump and Stokes 
fields is disturbed by such an effect. In a recent paper (Simaan and Loudon 1975b) the 
quantum statistical problem of the process of double-beam two-photon absorption was 
treated, and the time dependences of the joint photon probability distribution, its 
factorial moments, the degrees of second-order coherence and the correlation function 
of the two beams were determined. The stimulated Raman effect, as we shall see in this 
paper, also induces time-dependent changes in these properties. 

The equations which describe the rate of change of the photon statistical joint 
distribution caused by the stimulated Raman effect and its inverse are presented in 4 2, 
and equations for the rates of change of the moments and the correlation function are 
derived. These results are used in $3 to calculate the initial short-time behaviours of the 
statistical properties of the pump and Stokes beams. The opposite extreme of the steady 
state achieved after a long period of time is treated in Q 4. The short-time and steady 
state solutions give physical insight into the mechanisms by which the changes in the 
statistical properties of both the beams are brought about. 

The general solution of the photon rate equations for the case where almost all the 
atoms are in their ground states is given in Q 5. A Laplace transform method is used, 
similar to that employed by McNeil and Walls (1974) in their calculation of the photon 
probability distribution for the Stokes field alone in which both the pump and Stokes 
beams initially have definite numbers of photons. A more complete solution is derived 
for the time dependence of the joint photon probability distribution which enables the 
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statistical properties of both beams to  be calculated for any type of initial distribution. 
These results are compared with those of McNeil and Walls (1974) and some dis- 
crepancies are found. 

Section 6 is devoted to an approximate solution which is valid when the initial mean 
number of photons in the pump beam is much larger than the initial mean photon num- 
ber in the Stokes beam. In this section we shall assume that the depletion of power in 
the pump field is negligibly small, and hence the changes in its statistical properties can 
also be neglected. Within this limit the exact solution introduced in 0 5 is approximated, 
and simple expressions for the probability distribution of the Stokes field and its first 
two moments are derived. These expressions are evaluated for various types of initial 
distribution and it is proved analytically that the growing Stokes field, in addition to  the 
amplified version of its initial type, consists in general of a chaotic component which is 
generated by the amplification process. In 0 7 all the statistical quantities obtained 
throughout the paper and in particular the first moments, the degrees of second-order 
coherence and the correlation function are discussed in physical terms and illustrated 
by some numerical results in the form of graphs for some special cases of interest. 

2. Photon rate equations 

Consider a single mode of a pump field whose frequency allows a photon to be absorbed 
by a gas of N two-level atoms and then scattered into another single mode of Stokes 
radiation field. It is assumed that the atoms only have transitions of the required fre- 
quency for the Stokes component of the stimulated Raman effect where its anti-Stokes 
component is ignored. The conditions needed for any other processes to  occur are taken 
to be badly satisfied. Suppose that N atoms are in the ground state and a smaller num- 
ber N ,  in the excited state of the Raman transitions, with 

N , + N ,  = N .  (1) 

The numbers of atoms in the two states are assumed to be kept constant by some ex- 
ternal influence. The numbers n and m of photons respectively present in the pump and 
Stokes beams at time t are statistical quantities and governed by a joint probability 
distribution P,,,(t) which changes with time owing to  the process of Raman scattering. 
At  time t = 0, normally the two beams are considered to be statistically independent 
and therefore P,JO) can be written as a product of the photon distribution for the 
separate beams, 

Pn,m(O)  Qn(O)Rm(O)* ( 2 )  

The time-dependent changes in the P,,, are described by rate equations which shall be 
readily derived. 

The probability per unit time that the Raman effect takes place with a change in the 
photon numbers from n and m to n -  1 and m+ 1 can be written (Loudon 1973) as 

N ,Jn(m + 1) ( 3 )  
where J is shorthand for an expression which contains atomic dipole matrix elements 
and energy eigenvalues. The corresponding probability per unit time of an inverse 
Raman effect, leading to a change in the photon numbers n and m to n+ 1 and m- 1, is 

N,J(n + 1)m. (4) 
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These two processes reduce P,, ,  at a combined rate 

- N,Jn(m+ l)P,,, - N 2 J ( n +  l ) w ~ P ~ . ~ .  ( 5 )  

There are also two positive contributions to the rate of change of P,,, . If n - 1 and 
m+ 1 photons are present in the two beams, with probability P n - l , m + l ,  the inverse 
Raman effect increases P, , ,  at a rate determined by (4) with n and m replaced by n -  1 
and m+ 1 : 

N,Jn(m+ ' ) P n - l , m + l ,  (6) 

Similarly if n +  1 and m-  1 photons are present, with probability Pn+ l , m - , ,  the Raman 
effect increases Pa,, at a rate given by (3)  

N , J ( n  + l)mpn+ 1 

The total rate of change of P,,, from 

dP,,,/dt = -N ,Jn (m+ l)P,,,-N,J(n+ 

+ N 1 J (  n + 1 bpn + 1 , m  - 1 . 

with n and m replaced by n+ 1 and m-  1 : 

( 7 )  

5), (6) and (7) is 

(8) 
)mPn,m+N,Jn(m+ 1)'n- I . m +  1 

The four contributions to the rate of change are illustrated by the photon energy level 
diagram in figure 1. An equation identical to (8) can be derived by density operator 

Figure 1. Energy level diagram for the photons. The level separation is equal to the difference 
of the photon energies of the pump and Stokes beams, and the transition rates indicated 
are the contributions to dP,,Jdt. 

techniques. using an explicit form for the photon-atom Hamiltonian (Shen 1967, McNeil 
and Walls 1974). For N ,  = 0, (8) reduces to an equation derived by Loudon (1973), 
using a method similar to that used above. The numbers of photons must of course be 
positive and the first and third terms in (8) should be removed for n = 0, when the 
processes described by these terms cannot occur. Similarly if m = 0, the second and 
fourth terms should be removed. 

The probability distribution is assumed to be normalized : 

and it is seen by summation of (8) that a normalized distribution remains normalized 
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as the Raman effect and its inverse proceed. The rth moments of the two beams are 
defined by 

nl = C nrp,,, (10) 

mr = 1 mrPn,, 
n,m 

- 
( 1  1) 

n,m 

while their degrees of second-order coherence are defined to be 
- 

gL2' = (n2  - f i ) i f i 2  

Equations for the rates of change of the moments are obtained by time differentiation 
of (10) and (1 1) and insertion of the rate of change of P,,, from (8). For example, 

dii/dt = J 1 [ - N , n ( m +  l )+N, (n+ l)m]P,,, 
n,m 

d z i d t  = J [-N,n(m+1)(2n-1)+N,(n+l)m(2n+1)]Pfl , , .  (15) 
n.m 

In a similar way the rate of change of the correlation function 

FE = nmp,,, 
n.m 

can be written as 

d E / d t  = J 1 [N,n(m+ l ) ( n - m -  l )+N,(n+ l )m(m-n-  l)]P,,,. (17) 

The system of rate equations of which (8) is a representative only couples those ele- 
n , m  

ments P,,, for which 

v = n + m = constant (18) 
where v is a new variable and ranges from 0 to  cc in integer steps. With the help of (18), 
i t  is convenient in deriving the steady state solutions, as we shall see in 0 4? to write (8) 
as follows : 

dP,,,- Jdt = -NN,Jn (v -n+ 1)Pn3Y-, ,-N2J(n+ l)(v-n)Pn,,,.-fl 

+ N,Jn(v-n + l)P,,- , + N,J (n+ l)(v -n)P,,+ - n -  ,. 
It is clear that for a given v, this subset of equations is generated by taking the series of 
values of n which ranges from 0 to v, rather than a pair of the variables n and m. The same 
procedure used in deriving (19) can be used to express the rate equations in terms of v 
and m, but there is no difference in the final results obtained. A full account of the method 
ofdividing theset ofrateequationsisgiven by Simaanand Loudon(l975b)for thedouble- 
beam two-photon absorption process, although this case is more complicated in that v 
ranges from - cc, to E, instead of the range 0 to cc1 for the stimulated Raman effect. 

The sum of those elements of the probability distribution which have the same v 
is seen from (19) to  be a constant of the motion, 

where ( 2 )  has been used. It follows that the average over the photon probability distri- 
bution of any function of v is a constant of the motion which maintains its initial value. 
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For example the average of v itself generates the Manley-Rowe relation 

ii+m = n,+TTi, (21) 

and similarly the average of v 2  generates a relation between the second moments and 
the correlation function of the two beams 

- - - -  
n2 + 2 ~ i i +  m2 = n i  + 2 i i ,~ ,  + m i  (22)  

where the zero subscripts denote the values of the moments at t = 0. 

3. Short-time solutions 

The fact that the rate of change of each moment, as is seen from (14) and (15), depends 
on a moment or correlation of the next higher order, renders the equations insoluble 
by simple techniques. Knowing however that (2) is valid at the commencement of the 
Raman transitions, the time dependences of the moments correct to order t may be 
obtained by substitution of the initial values of the various averages on the right-hand 
sides of (14) and (1 51, whence 

n = n,-Jr[N,fi,(m,+l)-N,(n,.t l)E,] (23)  

n2 = ni - Jt [N1(24 - no)(E, + 1)- N 2 ( 2 z  + 3f i0  + l)E,]. (24) 
_ -  

The corresponding expansion ofgL2’can be obtained from these results and (1 2) with some 
algebra : 

(25)  

The initial time dependence of the correlation function obtained from (17) in a similar 
way to  that used in deriving (23)  and (24) above is 

nm = f i , ~ ,  +Jr{N,[&ni,+ 1) - iio(G + 2 ~ ,  + 111 + ~,[i&i,  + I)-E,($ + 22,+ I)]). 

gy’ = ( 2 )  g,, + 2N2Jt(Eo/fio1(2 - gL3. 

- 

(26)  
If this equation together with (23)  and (24) is employed to determine similar expressions 
for E and 2 respectively from (21) and (22), the expansion of g:) correct to  order t 
accordingly can be calculated from (13). For various initial light beams the linear time 
dependences of all the functions considered above can be obtained straightforwardly by 
substitution of the appropriate expressions for 2, g!,:) and 4 which can be found for the 
simpler photon distributions in 5 3 of Simaan and Loudon (1975a). 

The results obtained so far show that the Raman effect associated with the N I  
ground state atoms decreases the moments of the pump beam and increases those of the 
Stokes beam, while the inverse Raman effect associated with the N, excited state atoms 
causes the moments of the pump and Stokes beams respectively to increase and decrease. 
The short-time behaviour of the correlation function is more complicated and its varia- 
tion in general - is governed by the initial values of the moments. For example ifwe assume 
that E, = m i  = 0, the correlation function shows an initial increase by the Raman effect 
and no change by its inverse. The degree of second-order coherence gi2’ on the other 
hand is not affected to order t by the Raman effect and it is not affected by its inverse 
either for a beam of initially chaotic distribution where g$) = 2. Furthermore it is seen 
from (25) that gi2’ tends to  a chaotic value of 2 whether g!,:) is greater or less than 2. 
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Assuming that almost all the atoms are in their ground states, we can take N ,  = 0 

T = N J t .  (27) 
At this stage it is instructive to  extend our previous calculations and add an extra term 
or terms, in second order in t or even higher, to the expansions of the various functions. 
Further time differentiations of (14) and (15) and use of (8) respectively give expressions 
for the second derivatives of iiand 2. With the help of(2), the magnitudes of these deriva- 
tives at t = 0 can be obtained and are the coefficients of t Z  in power series expansions, 
and therefore correct to second order in t ,  (23) and (24) can be written as 

(28) 

and N I  = N for the remainder of the present section and define a new time variable 

5 = Eo - 7fio(E0 + 1) - i ~ ~ [ Z ( f i ,  + 1) - fio(G + 3fi, + 2)] 

- + ~ ~ [ 2 i 3 i i i , +  l)-ni(4mi+ 1 3 f i , + 9 ) + 3 i i 0 ( ~ + 3 m 0 + 2 ) 1 .  (29) 

- _  - 
nz  = ng - ~ ( 2 4  - iio)(mo + 1) 

- -  

The corresponding time dependence of the correlation function obtained in a similar 
way is 

nm = iioeo + 7 [ n 3 ~ ,  + 1) - fi,(mi + 2m, + I)] 
- - 

_ -  
+ g  1 2 7 -  [no(mo + 1) - ni(4mi + 1 I%, + 7) + iio(G + 6 4  + 1 lE, + 6)]. (30) 

The rather complicated expressions given above all simplify for the special case of 
having - -  no Stokes photons present before the Raman effect takes place. This implies that 
m, = m i  = m: = 0, and therefore a direct substitution of (28) and (29) into (12) gives - 

- 
(31) &$2) = g,, ( 2 )  + ( ~ * / i i ~ ) [ ( & i i , ) ( n ~  + ii,) - n i  - no], 

nEi/5m = g:;) + (7/2iii)(g - 7 2  + 65,J 
while a combination of (30), (28) and (21) produces the relation 

(32) 

Now if the method which has been already developed throughout the section is again 
used to determine the expansions of E a n d 2  correct to third order in t ,  the correspond- 
ing expansion of &) for the present special case obtained from (13) is 

gg) = 2g:;) + (~/ i i i ) (  12n2 - 46.3 + 405,). (33) 

The initial and short-time variations of this function and those of (31) and (32) are shown 
at the short-time ends of figures 8 and 9 of 4 7, where their behaviour is discussed in 
greater detail for various special cases of different types of initial pump beam. Note the 
odd behaviour of these functions for the case of an initially chaotic pump beam in com- 
parison with other cases. 

4. Steady state solutions 

The photon system, after a sufficiently long period of time has elapsed, settles down into 
a steady state where the right-hand side of the rate equations (19) can be set equal to 
zero. If the steady state distribution is denoted P,,y-n(co),  the rate equations give 

N , P , , v - n ( a )  = N Z P n - l , v - n + l ( a ) .  (34) 
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This result is the condition for detailed balance betveen the photon levels n,  m and n - 1, 
m + 1 as shown in figure 1. 

By induction from (34), 

Pn,,, -,(a) = W,/N 1 ) n P o , V ( a ) .  (35) 

Hence for each value of v ,  a single element of the probability distribution remains un- 
known in the steady state, and its magnitude can be found making use of (20), 

Thus with the help of (35), this result enables the steady state distribution P, , -“ (%)  to 
be determined for any initial distributions Q,(O) and RV-,,(0). 

It is seen that the subset of probability elements corresponding to a specified v and 
given by (35) has some similarity to a chaotic type of distribution (compare equation 
(10.17) of Loudon 1973). This photon distribution can now easily be used to determine 
the steady state values of the first two moments of the pump beam from (lo), 

- ( v 2  + Lt)(N,/N1)V- ‘]PO,,(cc)+fi,, (38) 

and of the correlation function of the two beams from (16), 

The corresponding moments of the Stokes beam are obtained by a direct substitution 
of these results into (21) and (22). 

The results again simplify when almost all the atoms are in their ground states and 
N ,  is negligibly small. In this case (35) gives 

Pn,v-n(=) = 0 for n 2 1, (40) 

and only those elements of the probability distribution with n = 0 and v ranging from 
0 to cc can be nonzero. In other words this result suggests that the pump beam has no 
photons in the steady state and therefore its moments and the correlation function must 
vanish. This is verified by (37), (38) and (39) if we let N ,  = 0. Keeping this in mind, the 
first two moments of the Stokes field may be obtained directly from (21) and (22). 

By setting N ,  = 0 in (36) and assuming that the Stokes beam has no photons at 
t = 0, we get 

P,,,(m) = QAQ, (41) 

in agreement with the large-time behaviours of the graphs shown in figures 4 and 6 of 
$5 ,  where the general-time dependence of Pn(s) is discussed in greater detail. As a direct 
consequence of (41), we conclude immediately that the moments and degree of second- 
order coherence of the Stokes field a t  s = a3 are identical to the corresponding quantities 
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of the pump beam at z = 0. The first moments E and degrees of second-order coherence 
g$) of the Stokes beams shown at the large-time ends of figures 7 and 8 are consistent 
with this conclusion. 

5. General solutions 

McNeil and Walls (1974) have pointed out that the rate equations for the photon pro- 
bability distribution ofthe Stokes field alone can be solved by a Laplace transform method 
in the case where N ,  = 0. Here we follow the same general method as these authors 
but obtain a more complete solution which enables the time-dependent statistical pro- 
perties of both the fields, pumped and Stokes, to be calculated for any kind of initial 
photon probability distribution. 

Substituting the Laplace transform 

where z is defined by (27), into the rate equations (8) and solving for c#J~,,,(s), one readily 
obtains 

the product in the numerator for a = 0 is defined to be unity and (2) has been used. The 
inverse transform of (43) for n > m (see Oberhettinger and Badii 1973, p 224) yields 

The denominator in (43) for n < m contains repeated factors and therefore in order 
to determine the inverse transform of $,Js), it is convenient to  rewrite (43) as follows : 

where 

for m = 0 
for m > 0 

O(m) = 
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and 
(m  - n)/2 
(m  - n - 1)/2 

for m - n even 
for m - n odd. 

Making use of the convolution theorem, the inverse transform of (46) has the form 

where 

for f,. = f, 
otherwise. br.,vy - -i' 

Equations (45) and (49) enable computation of the complete joint probability distri- 
bution P,,,, and the separate distributions P, and P, respectively defined by 

for arbitrary time T and any arbitrary initial distributions Q,+,(O) and Rm-z(0). For the 
sake of illustration the same types of initial distribution summarized by Simaan and 
Loudon (1975a) will be used to  take account of Q,+.(O) and R, -z(0), but for the remainder 
of this section we assume that the Stokes field has no photons at t = 0, and therefore 

If the incident beam is initially a number state with 10 photons in it, the time evolution 
of the joint distribution P,,, is shown in figure 2. The progressively slower decay of 
elements corresponding to the first four values of n and last four values of m of the photon 
numbers is apparent. At large values of t, off the right-hand end of the figure, the joint 
distribution tends to  its steady state form in which only Po,,, is nonzero and has the 
value unity. 

The time dependences of P,, and P, for the same special case as that of figure 2 can 
be obtained from (51) and (52). We note here that McNeil and Walls (1974) have dis- 
cussed the same special case and found expressions for P, only, but their results are not 
in full agreement with the ones determined above. (The summation in (6.5) of McNeil 
and Walls has the incorrect lower limit of n," which should be replaced by zero so that 
the whole equation becomes correct for n < N0/2 rather than n < N0/2 as suggested; 
on the other hand (6.6) which is supposed to  be valid for n 2 N0/2 rather than just 
n > N0/2 is a great deal different from our corresponding equation obtained from (52) 
and (49) for the special case we are dealing with.) 
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0 8  

- 
c 
v 

‘0 4 

0 0 4  0.8 
r 

Figure 2. Time dependence of the joint photon probability distribution P#,,,(T). The initial 
distribution is = 1 and the only nonzero elements of the distribution at subsequent 
times are those for which the sum of the two subscripts of P is equal to 10. The numbers 
attached to the curves indicate the common values of n and m. 

The time dependences of the separate distributions of both the pump and Stokes 
beams for an initially coherent incident beam with a mean number of photons Ti, = 2, 
are respectively shown in figures 3 and 4. It is seen from these figures that at large values 
of t, the distributions tend to their steady state forms in which the zeroth element of P, 
and all the elements of P, are nonzero. The behaviour of the elements of the distribution 
illustrated in figure 4 suggests that the growing Stokes field has a chaotic type of distri- 
bution for the values of time t smaller than 1.1, while as we move away towards greater 
values oft ,  this distribution continuously changes from the chaotic form to the coherent 

5 -  

0 

Figure 3. Time dependence of P,(T) for initial distributions in which beam n is coherent 
with a mean photon number Eo = 2 and beam m has no photons in it. The numbers attached 
to the curves indicate the corresponding values of n. Only the first five elements of the 
distribution are shown. 
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I 

Figure 4. Time dependence of PJr )  for the same initial distributions as figure 3. The numbers 
attached to the curves indicate the values of m. 

form, and as the steady state condition is achieved, the result predicted by (41) is verified 
and the distribution of the Stokes beam becomes purely coherent. 

The time evolution of P, and P,,, for another simple example of an initially chaotic 
pump beam this time, with ii, = 2 again, are respectively shown in figures 5 and 6. 
Clearly the behaviours of the graphs in figure 5 are similar to  those of figure 3, and the 
same thing can be said about figures 6 and 4 in the sense that the Stokes field grows 
chaotically and (41) is verified when the steady state is achieved. This means that since 
for the present special case the pump beam is initially chaotic, the steady state distribu- 
tion of the Stokes beam is chaotic too, and therefore in full agreement with the result 

1 . 
Figure 5. Time dependence of P,,(T) for initial distributions in which beam n is chaotic with 
ii, = 2 as the mean photon number, and beam m has no Stokes photons. Again only the 
first five elements of the distribution are shown. 
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I 

2 
5 

I 4 I I 

0 10 
0- 

Figure 6. Time dependence of P,(T) for the same initial distributions as used in figure 5 

shown,at the large-time end of figure 6 as the elements of P,,, are tending to saturate at 
the initial values of the corresponding elements of P ,  given at the vertical axis of figure 
5 where z = 0. 

6. Approximate solutions 

Consider the special case where beam n is initially much more intense than beam m, 

no >> E,. (54) 
It isclear thatas theRamaneffect proceeds, theratioii/mdecreases, the poorer theapproxi- 
mate solutions presented in this section become, and therefore should not be evaluated 
for large values of 5.  In the limit of (54), only those terms in the joint distribution with 
n >> m have significant magnitude, and hence in deriving an approximate expression for 
P,,, , (45) alone need be considered. Within these remarks, a and p which respectively 
range from 0 to m and 0 to a, can be neglected in comparison to n, and accordingly (45) 
gives 

This equation with the help of the relations 
2 -  1 n ( m - p )  = m!/ (m-a) !  
p = 0  

( y - p )  = (-  ly-yy!(a-y)! 
p = 0  
p + r  
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can be written as follows : 

With some lengthy algebra, and making use of (59) in (1 l), the first two moments of 
the Stokes field are 

z 
E = (Eo + 1) 1 exp(nr)Q,(O) - 1 

f l = O  

cc 3c1 - -  
m 2  = ( m i  + 3%, + 2) exp(2n.r)Qn(0) - 3(m, + 1) 1 exp(nr)Qfl(0) + 1. (61) 

In a similar way the first two moments of the pump beam can be obtained without diffi- 
culty, but since the variations in these moments are assumed to be negligible in comparison 
to their initial values, we have decided to  devote this section to  the study of the changes 
in the statistical properties of the Stokes field alone. Equation (60) is in agreement with 
the corresponding equations (12.103) of Loudon (1973) and (25) of Shen (1967). The 
method followed by Loudon can easily be used to  derive (61) as well. 

The summations in (60) and (61) may be performed without difficulty for the initial 
distributions given by Simaan and Loudon (1975a), and for an initial number-state 
pump beam containing no photons we find 

(62) 

(63) 

f l = O  n = O  

Fi = (MO + 1) exp(n,r) - 1 

2 = (3 + 3 ~ ,  + 2) exp(2not) - 3(fi, + 1) exp(n,s) + 1, 

while the corresponding results for an initially coherent beam of a mean photon number 
ii, are 

% = (KO + 1) exp{ii,[exp(z)- l]} - 1 (64) 

(65) 
In the limit where EO exp(z) and ii, exp(2.r) are less than (1 +no), and for the case of an 
initially chaotic pump beam, (60) and (61) can also be performed to  become 

(66) 

(67) 

A direct substitution of (59) into (52) gives an expression for Pm(.r), and after setting 

2 = (4 + 36, + 2) expjiiO[exp(2r)- I]} - 3(m0 + 1) exp{ii,[exp(r)- 11) + 1. 

iE = (Go + l)/[l + Eo - ii,, exp(.r)] - 1 
- -  
m2 = (mi  + 3 ~ ,  + 2)/[1+ ii, - ii, exp(2z)l- 3(m0 + 1)/[1+ E, - ii, exp(z)] + I .  

n = no it can be written as 

where 

represents the probability distribution of the growing Stokes field for an initially number- 
state pump beam containing no photons, and 

E, = exp(nor)- 1. (70) 
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Although carrying on discussing and evaluating all the above results for any type of 
initial distribution of both the pump and Stokes beam is possible, in the rest of this 
section we shall only consider the case of an initially number-state pump field and evaluate 
(69) for the various kinds of initial distributions given in $ 3  of Simaan and Loudon 
(1975a). 

Equation (69) enables the study of the sort of amplification occurring for any type of 
initial Stokes field by the Raman effect. In what follows four examples of these fields are 
considered to evaluate P,,,(no, 5). As a trivial but interesting example at the same time, 
let us assume the case described by (53) where the Stokes field initially has no photons 
in it. In this case (69) takes the form 

(71) 

Clearly the right-hand side of this equation is the Bose-Einstein distribution, appropriate 
to a thermal beam which has a mean photon number E, given by (70). Therefore we 
conclude that for the very special case of no initial Stokes photons, the growing field is 
thermal or what is sometimes called chaotic, and its first two moments are well known 
to be 

Pm(n,, 5 )  = E:/( 1 +E[)' + '". 

m = Kit (72) 

m 2  = ~E:+E,. (73) 
- 

Respectively these relations can be obtained directly from (62) and (63) by taking 
m, = m i  = 0. 

The next simplest example to consider is an initially number-state Stokes field con- 
taining E, photons, for which (69) can be reduced to 

- 

We note that this equation is consistent with the form taken by (5.10) of Schell and 
Barakat (1973) in the limit where only photon emission is considered. The distribution 
given by their equation is obtained by starting with a number state which then interacts 
with the atomic transitions to produce thermal photons. The first two moments of (74) 
are 

m = "+Ei, 

m 2  = E:, + 3m,m,+ 2iiif + E, 
- 

(75) 

(76) 
where 

(77) 
- mN = E, exp(n,r), 

and El given by (70), are the two time-dependent parts of E, respectively contributed by 
the number-state and thermal fields. Note that (75) is in agreement with (62), and since 
for a number-state distribution, $ = E:, (63)  and (76) are also identical. The conclusion 
to be drawn from the above results hence is that the initially number-state field is ampli- 
fied in accordance with (77), and the amplification process generates a thermal field of a 
mean photon number E, to be determined from (70). 

The third in our series of examples is an initially coherent Stokes field with a mean 
number of photons E,. This case reduces (69) to  the following well known form of distri- 
bution which describes a mixture of the coherent and thermal radiation (Jakeman and 
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Pike 1969, Lachs 1965, Schell and Barakat 1973): 

P,(no, 7)  = [ET/( 1 + Et)’ ‘“1 exp[ - E,/( 1 + E,)]L,[ - Ec/Ef (  1 + iii,)] (78) 
where 

E, = iii, exp(n,r) (79) 

is the mean photon number of the amplified coherent beam and L,  is a Laguerre poly- 
nomial. The first and second moments of the distribution shown in (78) are 

E = E,+E, (80) 

(81) m 2  - - tn, -2  + 4E,E, +E, + 2E: + E,. 

Again these relations can directly be obtained from (62) and (63) by setting 4 = E: +MO 
which is valid if the Stokes beam is initially coherent. The conclusion to be drawn from 
the results obtained above for the present example is that an initially coherent Stokes 
beam is amplified in accordance with (79), the amplified version of the beam maintains 
its initial type and the amplification process generates a thermal field of a mean photon 
number E, given by (70). For more discussion and physical interpretation of this point 
a paper by Loudon ( 1  970) is recommended. It remains to mention here that the problem 
of Raman scattering from phonons, in the limit of parametric approximation of the pump 
beam, has been considered by Walls (1973), and we note the closely related results of his 
9 3, obtained for the case of an initially coherent Stokes field, to one presented above. 

Finally we end the series of our examples by assuming that the Stokes field is initially 
thermal with E, as the mean photon number; this changes (69) to another thermal dis- 
tribution of the Bose-Einstein type, similar to  that of (71) but with every E, replaced by 
the E given in (62). Therefore an initially thermal field is amplified, but its statistical 
properties remain unchanged. 

All the above four examples apply to the case of an initially number state (any other 
kind of pump field with Qno(0) as the initial distribution can be taken into account by 
using (68)), and show that in general the growing Stokes beam consists of an amplified 
version of its initial type in addition to a thermal component which is generated by the 
process of amplification. We note here the close similarity of this result to the general 
conclusion drawn from a paper by Gordon et al(1963). 

- 

7. Discussion 

The general results derived in $ 5  have been used to  construct graphs for the time depen- 
dences of the joint probability distribution and the distributions of the individual beams 
for avarietyofinitial typesofphotondistribution,asshowninfigures2 to6. Themoments 
of these distributions and the correlation function of the two beams are often of more 
immediate physical interest than thedistributions themselves, and their time dependences, 
obtained from (lo), (1 1)  and (16) with the direct use of (45) and (49), give the most compact 
description of the effects of the Raman scattering process on the pump and Stokes 
light beams. In this section we present graphs for the time dependences of the mean 
photon numbers, the degrees of second-order coherence and the correlation function of 
the two beams for initial states in which the Stokes beam distribution has the form of (53) 
for the case of no Stokes photons at t = 0, and the pump beam initially has various kinds 
of distribution, namely number-state, coherent and thermal with mean number of 
photons ii, = 2.  
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The decaying and growing curves in figure 7 respectively show the exact time varia- 
tions of ii and % for the various special cases mentioned above. The behaviours of these 
moments at short times are consistent with the results of 9 3. It is clear that an initially 
thermal pump beam has caused faster decaying of ii and growing of % than that induced 
by initial pump fields of the coherent type or even number state. As long as E, >> iFio, 
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0 

Figure 7. Time dependence of the mean photon numbers ii (-) and t7i (-----) for 
initial distributions in which beam n has the character indicated on the curves and beam m 
initially has no photons in it (A:  chaotic; B:  coherent; C :  number). Theinitial mean number 
io is equal to 2 for all three types of pump beam. 

that is for t < 0.2 for the cases shown in figure 7, the Stokes beam is chaotic irrespective 
of the nature of the pump field. Examples are shown for t < 0.2 in figures 4 and 6. At 
longer times the nature of the Stokes beam becomes more complicated as the nature of 
the pump field begins to influence the statistical properties of the Stokes beam. However 
in the T -+ m steady state limit, where all the photons have been transferred to  the Stokes 
beam, the situation is again simple because the 7 -+ 00 probability distribution of the 
Stokes beam is the same as the t = 0 probability distribution of the pump beam. 

The dependences of the degrees of second-order coherence of the two beams on 
time t for the same initial distributions as used in figure 7 are illustrated in figure 8. The 
initial and short-time behaviours of g!,” and gg)  are respectively in accordance - -  with (31) 
and (33), and the direct substitution of the appropriate expressions for n:, ng and g$,) of 
the various types of initial beam in these equations explains the rather peculiar nature 
of the curves at the short-time end of figure 8, and especially the oddity of the curves 
associated with the special case of an initially thermal pump field. Apart from this case 
gi2) generally tends to increase, while gp’ tends to  decrease until it reaches the steady 
state limit of saturation which is equal to g!,;) as shown in 0 4. 

According to (33) the initial value of gp’ is 2g;;’. Thus the pump beams which have 
larger fluctuations generate initial Stokes beams which also have correspondingly 
larger fluctuations. The T -+ m value of gg) is g!,;) and the magnitude of g?) is thus re- 
duced by a factor of 2 between t = 0 and t = m. The large fluctuations in the chaotic 
pump beam produce a positive term linear in T in (33) so that gg)  rises from its initial 
value of 4 in this case before conforming to the requirement that its T = CO value must be 
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Figure 8. Time dependence of the degrees of second-order coherence g!” (-) and 
(- - - - -) for the same initial distributions as figure 7 (A, B. C as for figure 7 ) .  

2. Nothing has so far been said about the steady state value of g!,”, and the reason is 
because physically it has no meaning to discuss the statistical properties of a beam which 
contains no photons and obviously is the case of the pump beam in the steady state. 

Figure 9 shows graphs of the time dependence of the normalized correlation function 
nminm for the same initial states used in the two previous figures. The initial and short- 
time behaviours of these graphs are consistent with (32). According to  this equation 
nminm has an initial value of ght), which is larger for initial pump beams which have larger 
fluctuations and again the term linear in 5 in (32) is positive for a chaotic pump, producing 
a hump in the corresponding curve in figure 9. The general behaviour of the curves is 
qualitatively explained as follows. At  short times, the Stokes beam is preferentially 
produced at the peak fluctuations in the pump beam, leading to  a positive correlation 

- -- 

- -- 

Figure 9. Time dependence of the normalized correlation function niilfiE for the same initial 
distributions as figure 7 (A, B, C as for figure 7). 
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between the beams, ie E > iiE in the case of the chaotic pump. At longer times the 
peaks in the time-dependent fluctuations of the pump beam have been transferred to the 
Stokes beam, leaving gaps in the pump coincident with the peaks in the Stokes beam. 
Thus an anticorrelation effect, ie E < iiE, sets in at longer times, accounting for the 
downward trend of the curves in figure 9. 

All the above remarks apply to the case of no Stokes photons at t = 0. Any other 
cases different from this are much more complicated, and for most times simple conclu- 
sions are not available-ven the t + cc distribution obtained from (36) is fairly com- 
plicated. The case of an initially number-state pump, containing ii, photons, however 
is not difficult to discuss as follows. For ?io >> E, the Stokes beam has the thermal 
component it would have had in the absence of any Stokes photons initially, and the 
initial Stokes beam is amplified while maintaining its initial statistical properties. The 
Stokes beam thus contains two identifiable components. At longer times the Stokes 
distribution becomes complicated. In the t CO limit, the Stokes beam has the same 
distribution as it  had at t = 0, but with the origin of the distribution shifted from m = 0 
tom = n o .  

There have not to the author’s knowledge been any observations of coherence or 
correlation effects in experiments on the stimulated Raman effect. There is a similar 
lack of experimental data on coherence changes in the two-photon absorption process. 
However, the stimulated Raman effect should be the more favourable for such obser- 
vations since the growing Stokes beam is expected to show interesting coherence effects 
beginning with the initiation of the beam. By contrast, in two-photon absorption, an 
experiment would need to detect changes from the initial value of the coherence of a 
beam which is attenuated in the absorption process. It appears that the coherence pro- 
perties of the Stokes beam predicted in this paper should be observable with currently 
available materials and techniques. 
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